

Introduction to the Dynatest RAPTOR Rolling Wheel Deflectometer

Martyn Stonecliffe-Jones Dynatest Director of Consulting Copenhagen 2017

M J Lacroix (France 1956)

PDDLE (UK 1970)

French Curviameter (France 1973)

Airfield Rolling Weight Deflectometer by Quest Inc (US 1990's)

Applied Research Associates RWD (US 2000)

Traffic Speed Deflectometer by Greenwood (Denmark 2001)

RAPTOR by Dynatest (Denmark 2018)

2011	Dynatest initiates a project together with DTU (Technical University of Denmark) for developing a RWD, partially funded by the Innovation Fund Denmark
2013	Dynatest acquires a patent on the new principle of the RWD, utilizing image correlation for deriving deflection data
2015	The project ends with a functional prototype
2016	Dynatest and DTU initiates a new project called AWAPAVE, for developing a mature product based on the RWD technology. DTU leads the modelling effort towards back calculation.
2018	Dynatest starts offering high speed deflection measurements

Basic Principle

GOCATOR 2300 SERIES MODELS	2320	2330	2340	2350	2370	2380	
Data Points / Profile	1280	1280	1280	1280	1280	1280	
Linearity Z (+/- % of MR)	0.01	0.01	O.01	O.01	0.04	0.04	
Resolution Z (mm)	0.0018 - 0.0030	0.006 - 0.014	0.013 - 0.037	0.019 - 0.060	0.055 - 0.200	0.092- 0.488	
Resolution X (mm) (Profile Data Interval)	0.014 - 0.021	0.044 - 0.075	0.095 - 0.170	0.150 - 0.300	0.275 - 0.550	0.375 - 1.100	
Repeatability Z (µm)	0.4	0.8	1.2	2	8	12	
Clearance Distance (CD) (mm)	40	90	190	300	400	350	
Measurement Range (MR) (mm)	25	80	210	400	500	800	
Field of View (FOV) (mm)	<mark>1</mark> 8 - 26	47 - 85	96 - 194	158 - 365	308 - 687	390 - 1260	
Recommended Laser Class	2M	2M	3R	3R	3B	3B	
Other Laser Classes	3R	3R, 3B	3B	3B			
Dimensions (mm)	Side Mount 35x120x149.5	Top Mount 49x75x142	Top Mount 49x75x197	Top Mount 49x75x272	Top Mount 49x75x272	Top Mount 49x75x272	
Weight (kg)	0.8	0.74	0.94	1.3	1.3	1.3	

Laser-based surface profilers

Image scan from several laser profilers for image recognition

• Define template in image from Gocator *i*

- Define search area in Gocator *i*+1 —
- Nomalized cross-correlation finds best match —
- Calculate deflection Harr algorithm or other

Design Features

Axle-free trailer

No rear axle will allow lasers to be positioned inline the centre of the wheel load. Also allows the ballast to be slid into the trailer system.

Air Suspension

The air suspension allows higher payloads, easy loading of ballast, low center of gravity and low crosswind sensitivity.

Self Calibrating System

Allow calibration of laser sensors before starting a test.

	RAPTOR	Bus
Trailer Length (m)	9.5m	-
Total Length (m)	13.0	13.0
Width (m)	2.50	2.55
Height (m)	3.15 to 3.55	3.75

Can survey local roads where highest rates of deterioration are most likely.

Main Features:

- Road friendly air suspension higher loads allowed
- Easy loading of test systems and ballast
- Low center of gravity
- Low crosswind sensitivity
- Shift beam to either side
- Integrated calibration system

Test Data

Repeatibility - Loading

- Central deflection
- 19 repetitions
- 3 different loads
- 250m test length
- 2.5 meter average

Repeatibility - Speed

- Central deflection
- 5 repetitions
- 2 Speeds (25kph and 40kph)
- 550m test length
- 10 meter average

- 850m Comparison site will be tested throughout the year
- Test locations every 10m

- 850m Comparison site will be tested throughout the year
- Test locations every 10m

- 850m Comparison site will be tested throughout the year
- Test locations every 10m

- 200m Site
- Test locations every 5m

Next Steps

- Continue with FWD vs RAPTOR correlation
- Possibly expand the analysis to include layer stiffness levels
- Add LCMS cameras
- Maybe add GPR but improvements within the analysis of this data will be needed
- Maybe add LiDAR
- First commercial survey April 2018

Incorporate other Dynatest equipment

RAPTOR (including LCMS)

Fast Falling Weight Deflectomter (FFWD)

FFWD Accelerated Pavement Tester (FFWD-APT)

Level of Information

<u>Thank you</u>

