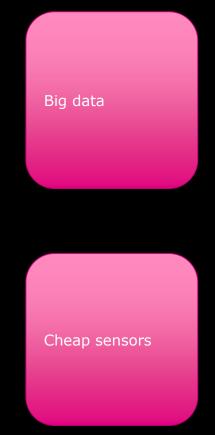


HAMMERDisruptive applications of road data

Powered by

DECISIONS IN INFRASTRUCTURE PERSONAL OPINIONS TRUMPS DATA



DECISIONS IN INFRASTRUCTURE

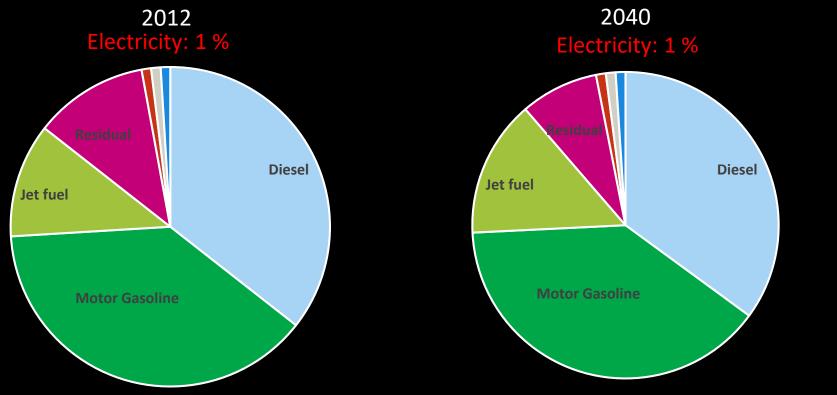
- I ransverse unevenness
- Longitudinal unevenness
- Ravelling
- Texture
- Cross fall
- Water Layer depth
- Edge damage
- Pointing
- Geometry (gradient, curvature)
- Coordinates (DGPS)
- Road images
- Etc etc

HVWWES

Purpose-oriented products

HVWWES

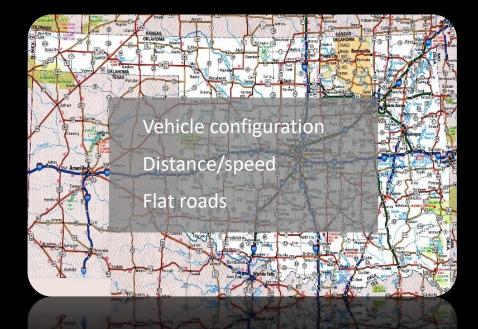
WHAT ARE WE LOOKING AT?


CLIMATE CHANGE: WE ARE NOT MOVING AT SPEED

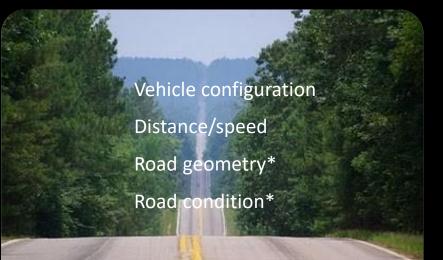
ACCELERATE INNOVATION ELECTRIFICATION IS A FRACTION OF THE ANSWER

<u>Transportation sector energy consumption - EIA</u> <u>https://www.eia.gov/outlooks/ieo/pdf/transportation.pdf</u> HVWWES

LOWER CARBON EMISSIONS? CAN WE DO SOMETHING WITH EXISTING RESEARCH?

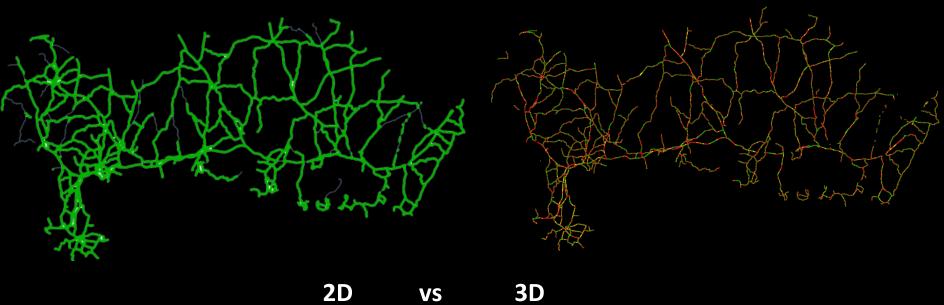

FUEL CONSUMPTION IS SIGNIFICANTLY AFFECTED BY

- ROAD GEOMETRY
- ROAD ROUGHNESS
- VEHICLE CONFIGURATION


HVWWES

CAN WE DO SOMETHING TODAY? EXAMPLE ROUTE PLANNING

Traditional 2D



HVWWES

*Hilliness, curvature, IRI, MPD

10-20 % fuel and CO2 reduction potential

FUELSAVE SO WHAT?

Transport work in Sweden on secondary and tertiary roads (74 % of the network)

- 1,7 Billion SEK

- 300 000 tons CO2

(for reference, 600 million bathtubs)

Yearly

* <u>https://www.trafa.se/vagtrafik/lastbilstrafik/</u> average 3,7 liters per 10 km and 15 SEK per liter

WHERE DO DECISIONS FIT IN?

Ε

HVWWES

FUELSAVE STANDALONE AND API

IMER

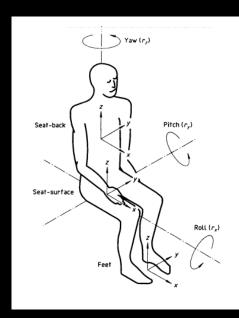
IN VEHICLE VIBRATIONS ARE A SIGNIFICANT FACTOR IN THE MOST COMMON WORK INJURY IN THE WORLD

National Cooperative Highwa	eport 353	hale-body
		exposure to whole board
	A ston of	human exposition
		human exposure to whole-body
ATION	and shock	
status : @ crit	and the to mediate	
edition : 5 rechnical committee : ISD/TC 108/SC4	respect to human beings	
Edition : 3 Technical Cosmittae: ISO/TC:1001/SC4 ISS: 13:160 Vibration and shock with		
LIFE CYCLE A constants a molecular event 5 to 00 100 2000 Press	ara Statisty ∼ 30 40 50 60 90 95	
REVISIONS / CORRECT Preferance G = 0.2 3511-1-1497 (com	ENDA Now under development © ISO(ANV: 2633-1	

WHOLE BODY VIBRATIONS TARGETING THE MOST COMMON INJURY IN THE WORLD

WHY?

WHY?



34 % of all bus and truck-drivers states that they have problems arising from vibrations in the driver environment

VIBRATIONS; THE BASICS

		Daglig exponeringstid											
		5 min	15 min	30 min	1h	2h	3h	4h	5h	6h	8h	10h	12h
	0,1	0	0	0	1	1	2	2	3	3	4	5	6
	0,15	0	0	1	1	2	3	5	6	7	9	11	14
	0,2	0	1	1	2	4	6	8	10	12	16	20	24
	0,25	0	1	2	3	6	9	13	16	19	25	31	38
	0,3	0	1	2	5	9	14	18	23	27	36	45	54
	0,35	1	2	3	6	12	18	25	31	37	49	61	74
	0,4	1	2	4	8	16	24	32	40	48	64	80	96
	0,45	1	3	5	10	20	30	41	51	61	81	101	122
	0,5	1	3	6	13	25	38	50	63	75	100	125	150
◄	0,6	2	5	9	18	36	54	72	90	108	144	180	216
Acceleration [m/s ²]	0,7	2	6	12	25	49	74	98	123	147	196	245	294
eler	0,8	3	8	16	32	64	96	128	160	192	256	320	384
atic	0,9	3	10	20	41	81	122	162	203	243	324	405	486
n l	1,1	4	13	25	50	100	150	242	250	300	404	500	600
j <u>u</u>	1,2	5	15	30	61	144	182	200	303	363	484	605	726
s]	1,3	6	18	36	72	144	254	288	360	432	576	720	864
	1,4	8	25	49	98	196	294	392	490	588	676	980 845	1176 1014
	1,5 1,4	9	28 25	56 49	113 98	225 196	338 294	450 392	563 490	675 588	900 784	1125	1350
	2	17	50	100	200	400	600	800			1600	2000	2400
	2,5	26	78	156	313	625		1250			2500	3125	
	3	38	113	225	450	900	1350	1800	2250	2700	3600	4500	5400
	3,5	51	153	306	613	1225	1838	2450	3063	3675	4900	6125	7350
	4	67	200	400	800	1600	2400	3200	4000	4800	6400	8000	9600
	4,5	84	253	506	1013	2025	3038	4050	5063	6075	8100	10125	12150
	5	104	313	625	1250	2500	3750	5000	6250	7500	10000	12500	15000

TODAY?

CAN WE MEASURE IT?

State network level

Sub-/Urban road level?

LOOK IN YOUR POCKET

ISO/AWI 2631-1

Mechanical vibration and shock — Evaluation of human exposure to whole-body vibration — Part 1: General requirements

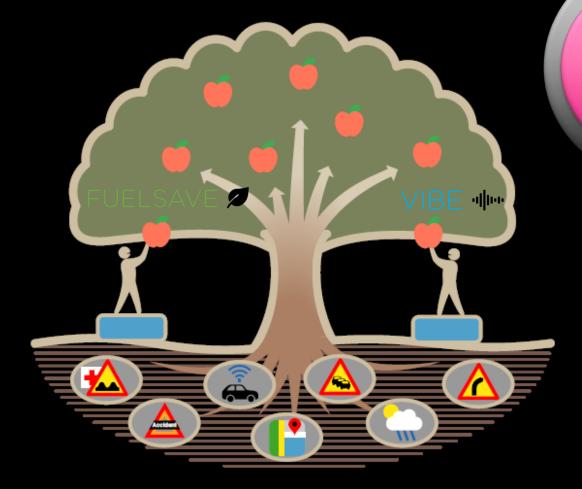
									-
5	EN	ER	AL	IN	FO	RN	AT	101	ν

Status : O Under development
Edition : S
Technical Committee : ISO/TC 108/SC 4 Human exposure to mechanical vibration and shock
ICS : 13.160 Vibration and shock with respect to human beings

LIFE CYCLE A standard is reviewed every 5 years

00 10 20.40 Preparatory * 30 40 50 60 90 95
REVISIONS / CORRIGENDA

VIBE: targeting whole body vibrations on network level with big data


MAINTENANCE THE OTHER WAY

SUMMARY

Objective & data driven

$H \land M \land \Xi R$

Is all stab al stab at the table to table table to table table to table table to table table table table to table table