

European Road Profile Users' Group 2023 Better use of data and smarter analysis

Human-centered Evaluation of Expressway Surfaces Focusing on Mental Stress of Road Users with Biosignals

October 25, 2023@Athens, Greece

Marei INAGI, Kazuya TOMIYAMA, Masamitsu ITO (Kitami Institute of Technology) Kenichi MEGURO, Masayuki EGUCHI, and Masakazu SATO (East NEXCO Co., Ltd.)

Introduction

Roughness Control Criteria for Expressways in Japan (NEXCO):

International Roughness Index (IRI)

- ✓ Fixed interval of 200m \leq 3.5mm/m Average roughness level
- ✓ Fixed interval of $10m \le 8.0mm/m$ Localized roughness level

▶researchmap

An Example of IRI-based Surface Evaluation in NEXCO

Motivation

O transp.kit

Distribution of Complaints in FY2021

▶ research map

tomiyaka

in kazuya-transp

User Demand for Ride Quality Improvement: **100+ User Complaints** (NEXCO East, Kanto Branch, FY2021)

A lot of complaints were recorded even though the IRIs were under control threshold

Gap between users' rating and maintenance criterion

https://sites.google.com/site/kittomiyama/

Research Purpose and Flow

DS Experiment

KITDS can reproduce mm scale surface profile for the evaluation of riding safety and comfort

in kazuya-transp

O transp.kit

bresearchmap

tomivaka

https://sites.google.com/site/kittomiyama/

Roughness with Complaint(s)

Transportation Engineering Lal

Driving Scenario

(1) Vehicle Speed: 80km/h (constant without driving operation)

(2) Surface Condition: 10 surfaces given randomly

- Test Surface (A/B/C)
 Control Surface (a/b/c) Combined
 - Reference Surface (IRI_{Fix}(200)=1.7mm/m; average of in-service expressways)

(3) Duration: 1.5-2.0 min/run, 16.5-22.0 min/participant

(4) Participants: 6 students (average of 22.7 years old) and 11 practitioners (average of 35.3 years old)

Control Surface

a. IRI_{Fix}(200) = 1.0 mm/m: New

l c. IRI_{Fix} (200) = 3.5 mm/m: Criterion

b. $IRI_{Fix}(200) = 2.7 \text{ mm/m}$: 50% uncomfortable

Biosignals

A measure of autonomic nervous system on stress and relaxation

Biosignals

A measure of autonomic nervous system on stress and relaxation

Validation of DS Experiment

Difference of Participants

Source	SS	DF	MS	F	р
Participant	0.559	1	0.55986	0.89	0.3599
Error	10.0893	16	0.63024		
Total	10.6437	17			

Difference between DS and Real Vehicle

Source	SS	DF	MS	F	р
Surface	0.1903	3	0.06344	0.11	0.9533
Error	21.7526	38	0.57249		
Total	21.9449	41			

No significant difference has been observed

Results

Relationship between IRI and Heart Rate Variability (HRV)

▶researchmap

Transportation Engineering Lab

Results

O transp.kit

in kazuya-transp

Relationship between IRI and Skin Conductance Response (SCR)

tomiyaka

▶ research map

- SCR responds to surface irregularities
- Frequency of SCR is consistent with localized roughness fluctuation
- Roughness fluctuations causing the reduction of HF of HRV lead to the increase of SCR frequency
- Mental stress increase with occurrence of SCR and decreasing HF at the same time

Results

14

Transportation Engineering Lal

Discussion

transp.kit

in

()

tomiyaka

▶ research map

Response of the QC Model and Sensitivity of Whole Body Vibration

Sensitive frequency for whole body vibration : 4-8Hz -> Corresponding wavelengths 2.8-5.6 m at 80 km/h

kazuya-transp

Mechanism of User Complaint Occurrence

 (1) Profile components including wavelengths ranging from 4 to 8 m which are insensitive in IRI induce vehicle vibration sensitive to human body at 80 km/h.

(3) Complaints can be raised for surfaces stimulating mental stress significantly which is hard to be evaluated with IRI.

https://sites.google.com/site/kittomiyama/

Conclusions

in kazuya-transp

transp.kit

Relationship between biosignal and surface roughness

▶ research map

- ✓ surface roughness inducing mental stress can be underestimated with IRI.
- Profile analysis focusing of waveband characteristics of surface profile
 - ✓ Mental stress increases with increasing profile components including wavelengths ranging from 4 to 8 m even if the IRI indicates an acceptable level.

https://sites.google.com/site/kittomiyama/

Gap analysis of user response and maintenance criteria
✓ The insensitivity of IRI to the wavelengths between 4 and 8 m causes the gap in the maintenance criteria in terms of IRI and the road user rating.

tomiyaka

https://linktr.ee/transp.kit

▶ research map

17

Thank you for your kind attention Question?

Kazuya Tomiyama, Dr. Eng., tomiyama@mail.kitami-it.ac.jp

▶researchmap tomiyaka