

AI & Its Potential Impact on Future Pavement Evaluations

Kelvin C.P. Wang, PhD, PE, Dist.M.ASCE Director of the Western Transportation Institute

Montana State University & WayLink Systems Corporation

The Tenth Conference of the European Road Profile Users' Group (ERPUG) Radisson Blu Park Hotel, Athens, Greece October 26, 2023

Introduction to Western Transportation Institute (WTI)

Major Research Institute in Transportation in the US
 Known for Rural Transportation Research

oWTI in Bozeman, MT; Montana State University

- \$10million Annual Research Expenditure at its Peak with 50 Staff Members
- ➢Will Grow in Safety Research & Automated Evaluation

0.5-mm 3D, Pave3D 8K After 30 Years

30-Year Commitment

Speed: 100km/h

Resolution: 1mm

CrackNet

Detection Output with Pixel-Level Accuracy

(Zhang at al. 2017, in Computer-Aided Civil and Infrastructure Engineering)

Traditional Artificial Neuron Network (ANN)

of Neurons<10⁴

of Neurons=10¹¹ (Human Brain)

Shallow Abstraction

Limited Number of Layers & Neurons
 Cannot Fully Reflect the Complexity of Problems
 Limited Amount of Data

Deep Learning: New Generation of ANN

Deep Abstraction: # of Layers: 10¹-10³, for Complex Problems
 Complex Connections Among Neurons: 10²-10⁴ per Neuron
 Enhanced Reliability: Exhaustive Variations of Example Data
 High-Performance Processing: Critical

Why Deep Learning?

□Strong Learning Ability and Versatility

> A DL Network: Multiple Types of Objects (Pavement Distresses)

DEnhanced Reliability

> Feed with Exhaustive Variations of Examples

Learning/Knowledge Accumulation

Similar to Human Learning Process

Some Insights in Deep Learning

- OArtificial Neurons: Simulating Humane NeuronsOLarge # of Neurons & Layers
- Key: Connecting Weights between Layers of Neurons
 Low Resolution of Weights: around 8-bit or less simulating range of signal variations of humane neurons
 GPUs: perfect for massive parallel processing at low resolution
 Very Sparce & Huge Matrix Operations: new hardware
- oMany New Methods on Deep-Learning by Large Firms

Innovations to determine weights for higher performance
 Learning/Training and Inferencing: two separate processes

Applications of Deep Learning

•Cognition based Classification •Perfect for Cracking Identification, like CrackNet •Can be very fast depending on GPU & Platform Other Problems in Pavement Evaluation Non-Cracking Visual Distresses •Pavement Safety o"Long-Shot" Pavement Problems • Relating Surface Deflections to Layers' Moduli? **OPavement Materials Properties** • Specific Challenges in ME based Pavement Design

Introduction to Non-Contact Safety Sensor

- Pavement texture, friction, and hydroplaning: three main aspects in performing pavement safety evaluations
- Not possible: microtexture at highway speeds
- Current friction testing devices: expensive, hard to maintain, unable to perform network friction evaluation, & data accuracy-repeatability in question
- Need a new approach to collecting pavement safety information in a true non-contact and continuous manner for network survey

Factors in Pavement Safety Evaluation

- Pavement texture, friction, and hydroplaning: three main aspects in performing pavement safety evaluations
- The number and severity of traffic crash: increase when roadway sections have low friction numbers or texture depth
- Highway locations with a propensity for hydroplaning: identified and corrected with proper remedies to minimize the potential safety risks

Prototyping 0.1-mm 3D Laser Imaging

Current 0.1-mm 3D Safety Sensor

Samples of 0.1mm 3D Pavement Surface

Samples of 0.1mm 3D Pavement Surface

Example Images of 0.1 mm Safety Sensor

Asphalt Pavements

Example Images of 0.1 mm Safety Sensor

3D Images

2D Images

Concrete Pavements

Need of Ultra-High Resolution for Safety Sensor

- Using three-dimensional (3D) imaging technology for pavement texture evaluation
- Stationary devices for 3D texture evaluation
 - Collect high resolution 3D texture images statically
 - Unable to conduct network texture evaluation

Objective

- Reconstruct 0.1 mm 3D texture data using PT-SRGAN at highway speed
 - 0.1 mm 3D data along transverse direction
 - Resolution along longitudinal/travel direction
 - Need to increase the longitudinal/travel resolution
 - Super Resolution (SR) Techniques

Data Collection

- Collect true 0.1 mm texture data at a speed < 1 mph via 0.1 mm 3D Safety Sensor
 - 10 road surface types (5 AC and 5 PCC)
 - 1468 images for model training, validation, and testing

21

Recursive GAN on Akin-Laplacian Pyramid

- Advantages
 - High upscaling factors: up to 64x
 - Any upscaling factor in combination with bicubic upscaling at each scale

Example Results (1)

• Asphalt pavement

Example Results (2)

• Longitudinally grooved concrete

MPD and MTD for Macro-texture

Wavelet Energy for Micro-Texture

Pavement Friction Prediction - DFT

Conclusions

Present

Deep Learning Outperforms Traditional Approaches
 Deep Learning Fulfills Pavement Distress Detection
 GPU Parallel Computing Supports Real-time & Faster Detection

Future

Reduced Dependence on Manually-Labeled Data

- **Fully-Intelligent Multiple Distress Detection**
- **>ME-Design to PMS: Many AI Based Solutions**
- Bright Future: Non-Contact 3D Safety Sensor