

Collecting network-level structural capacity and bluring the line between network and project level pavement asset management

TPF-5(385)

Gerardo Flintsch, Dan Pletta Professor of Engineering Director, Center for Sustainable and Resilient Infrastructure

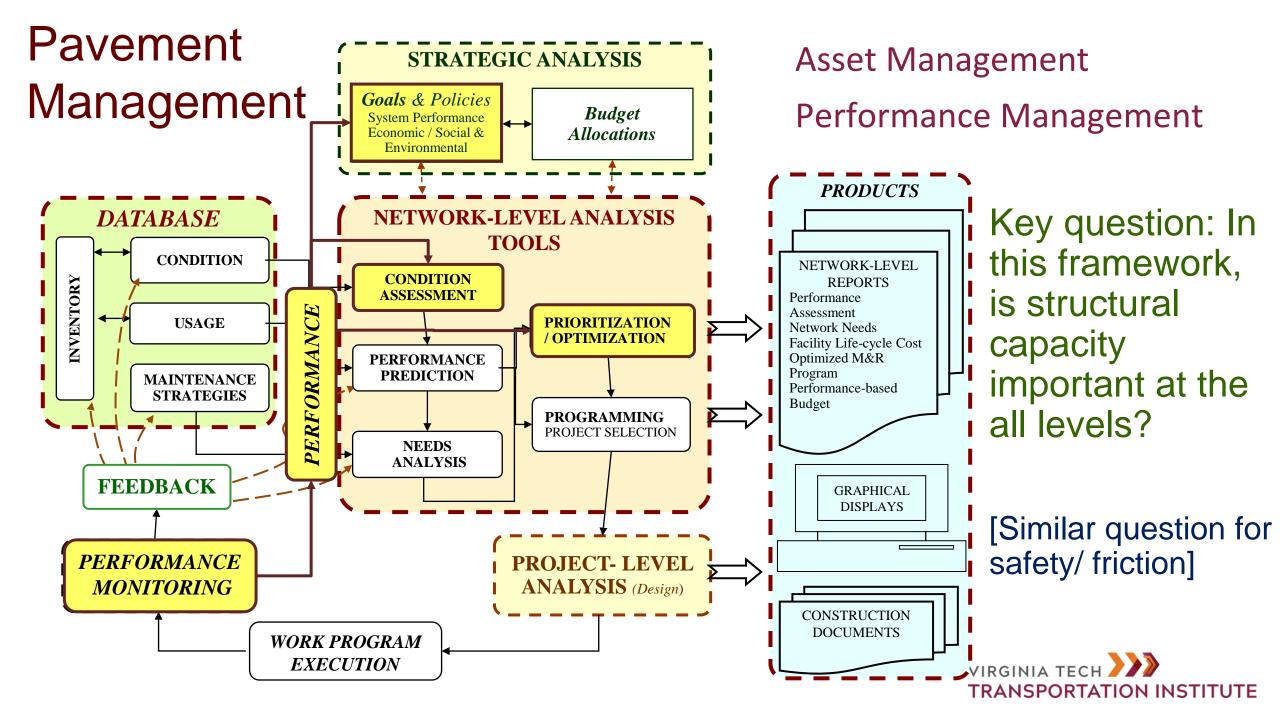
October 25, 2023

Contents

- Introduction
 - PMS and Structural Evaluation
- Applications
 - Network Level
 - Corridor/ Project Level

Conclusions

- Acknowledgements
 - VDOT/ VTRC
 - TPF-5(385)
 - Samer Katicha, CSRI
 - Jim Poorbaugh, MS DOT
 - Brian Diefenderfer, VTRC
 - Eugene Amarh, CSRI
 - Marin Scavone, CSRI
 - Shivesh Shrestha, CSRI



1. Introduction



Pavement Performance Project vs. Network Level Data Collection

Service and Aser	Serviceability
Perception	(IRI)
Physical	Distress
Condition	(PCI)
Structural Integrity /	Défonction
Load-Carrying Capacity	(PCI)
Safety and	Friction/
Sufficiency	Macrotexture
Environmental	Tire/Pav. Noise
Impact	Rolling Resistance, TRANSPORTATION INSTITUTE

Evaluation Demonstration of Network Level Pavement Structural Evaluation with Traffic Speed **Deflectometer: Final Report** nder Contract # DTEH61-11-D-00009-T-1300 nia Tech Transportation Institu May 2017

Implementation

Several State Efforts

- ✓ Virginia
- Louisiana
- Nationwide TPF 5-385 & 518

PF TRANSPORTA	TION	About 🗸	Solicitations ~ Studie	rs∨ Help∨					
	oled Fund - Study Detail at Structural Evaluation with Traffic Speed Deflection D	evices (TSDDs)							
avement Structu eflection Devices	ral Evaluation with Traffic Speed 5 (TSDDs)			🖶 Print					
General Information		Financial Summary							
Study Number:	TPF-5(385)	Contract Amount:							
Former Study Number:		Total Commitments	\$6,722,000.00						
Lead Organization:	Virginia Department of Transportation	Received:							
Solicitation Number:	1478	100% SP&R Approval:	Approved						
Partners:	Louisiana Transportation Research Center,	Contact Information							
	AR, CA, CO, FHWA, GADOT, ID, IL, IN, KS, KY, LA, MI, MN, MO, MS, MT, NC, NM, NV, OK,	Lead Study Contact(s):	Bill Kelsh						
	PADOT, SC, TN, TX, VA, VT, WI		Bill.Kelsh@VDOT.Virginia.go	, .					
Status:	Cleared by FHWA		Phone: 434-293-1934						
Est. Completion Date:		FHWA Technical Liaison(s):	Nadarajah Sivaneswaran						
Contract/Other Number:			Nadarajah.Sivaneswaran@d	oLgov					
Last Updated:	Jun 27, 2022		Phone: 202-493-3147						
Contract End Date:		Study Champion(s):	Brian Diefenderfer						
			Brian.Diefenderfer@VDOT.Vi	rginia.gov					
			Phone: 434-293-1944						

https://www.pooledfund.org/Details/Study/637

Verification

NCHRP 10-105

https://onlinepubs.trb.org/onlinepubs/nchrp/docs/ NCHRP_Project_10-105_Final_Report.pdf

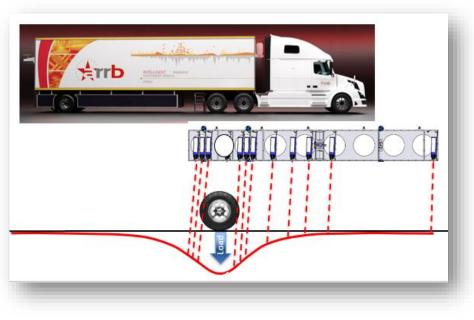
VIRGINIA TECH

Demonstration

Demonstration of Network Level Pavement Structural Evaluation with Traffic Speed Deflectometer

Transportation Pooled Fund Study TPF-5(385)

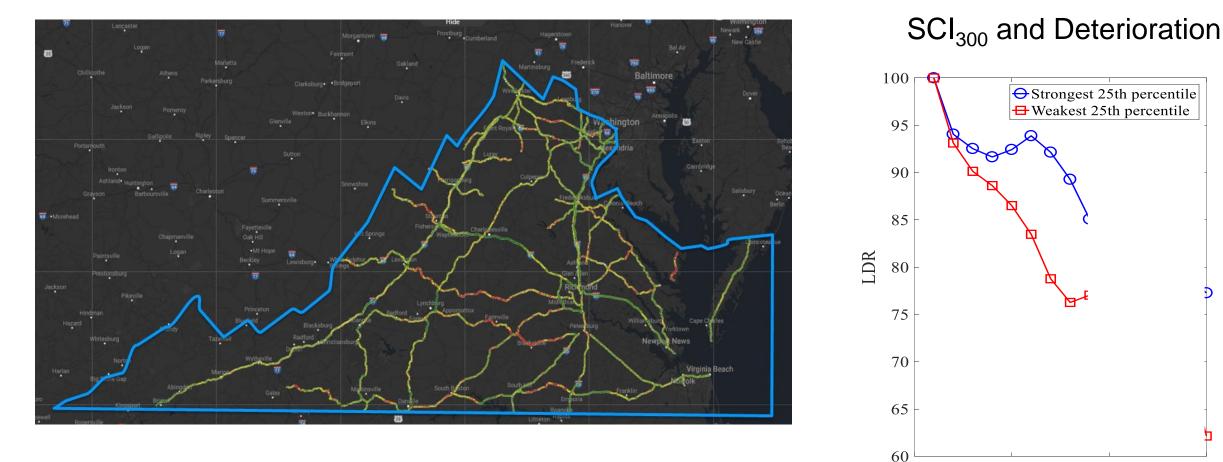
Objective: Providing participating agencies guidelines on how to specify collection and **use data collected with TSDDs for network- and projectlevel** (if feasible) pavement management applications.


Partners: AR, CA, CO, FHWA, GA, ID, IL, IN, KS, KY, LA, MI, MN, MO, MS, MT, NC, NM, NV, OK, PA, SC, TN, TX, VA, VT, WI

Research Team:

http://www.pooledfund.org/Details/Study/637

Applications



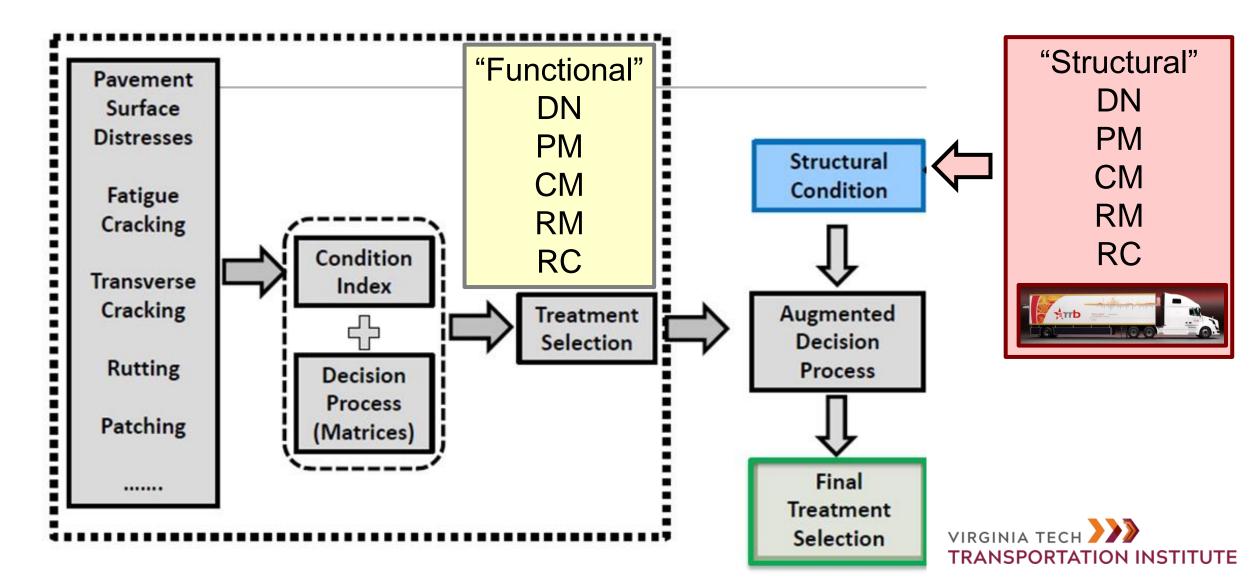
Example Applications/ Case Studies

- Network-level
 - Virginia DOT
- Project Level
 - Mississippi DOT

- Other case studies available from pooled fund (but not covered).
 - Idaho DOT
 - FHWA Eastern Federal Lands
 - Wisconsin DOT
- Although we still have a few technical questions
 - → The main question for widespread implementation is a business case:
 What is the return on the investment in traffic-speed structural capacity data collection

Virginia Case Study - Motivation for Network Structural Assessment

15


10

5

Time from last treatment (Years)

0

Structural Data Use by VDOT

Approach

- ✓ AASHTO method for SNeff and Mr
- AASHTO method for SNeff and Mr $\rightarrow SN_{eff} = 0.0045H_p \sqrt[3]{E_p}$ RSSL using AASHTO design equation \rightarrow ESALs = f(SN) \checkmark
- Convert RSSL to treatment category (similar to functional):

Structural Based Treatment	Remaining Structural Life
DN: Do Nothing	>20
PM: Preventive Maintenance	20 – 12
CM: Corrective Maintenance	12 – 8
RM: Restorative Maintenance	8 – 3
RC: Reconstruction	<3

Combine Structural and Surface Decision Matrices

		Treatments																							
Func.	DN							PM	S					ž					RC						
Struct.	DN	PM	CM	RM	RC	DN	PM	CM	RM	RC	DN	PM	CM	RM	RC	DN	PM	CM	RM	RC	DN	PM	CM	RM	RC
Final	DN	DN	DN	DN	DN	Md	Md	PMDN*	DN	DN	PM/CM	PM/CM	CM	RM	RC	CM	CM	CM	RM	RC	CM	CM	RM	RM/RC	RC

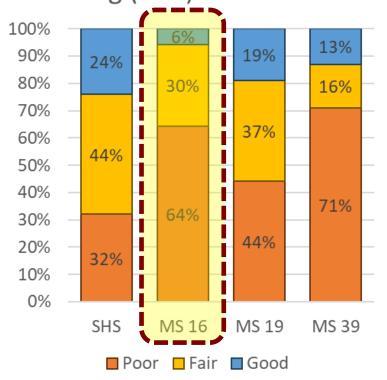
- Cost of surface condition only: \$175 mil.
- Enhanced (surf. condition + traffic and age): \$194.4 mil.
- Surf. condition + structural condition: \$130.9 mil. (25% reduction)
 - Caveat: some treatments are deferred to the future

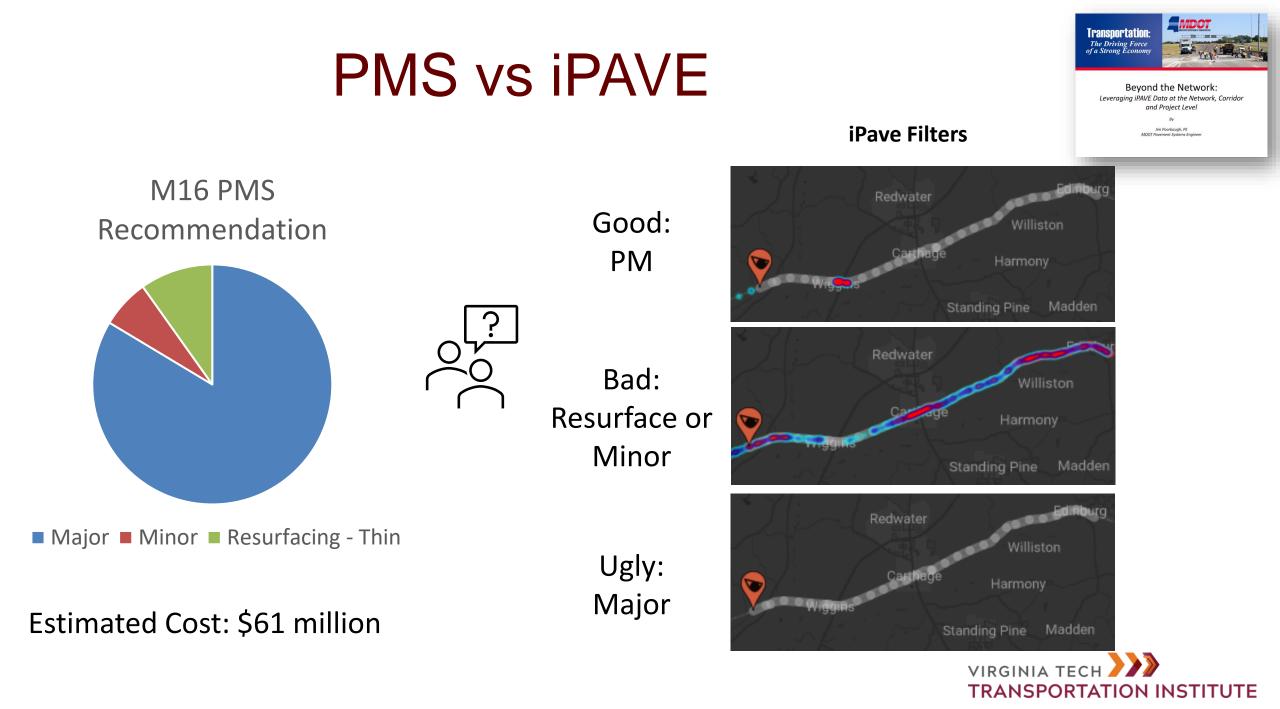
VIRGINIA TECH

LCCA

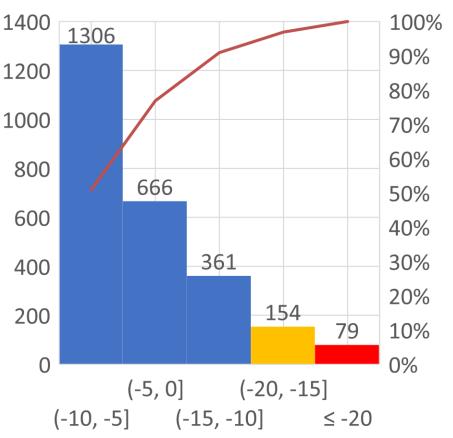
Mississippi DOT Case Study – Mississippi Triangle

Transportation: The Driving Force of a Strong Economy

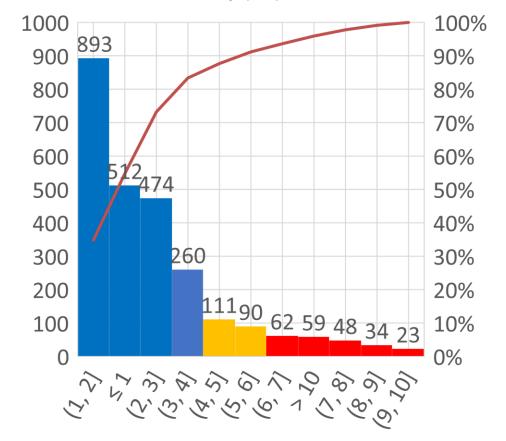

Beyond the Network: Leveraging iPAVE Data at the Network, Corridor and Project Level


> Jim Poorbaugh, PE MDOT Pavement Systems Engineer

Quick Stats	MS16	MS19	MS39	SHS
Total Lane Miles	349	265	127	28,065
Ave PCR Ranking out of 341	243	200	221	-
% SHS LM	1.24%	0.94%	0.45%	-
% SHS Poor LM	2.5%	1.3%	1.0%	-
Ave Corridor PCR	70	72	71	76
Average IRI	130	106	140	110
Average Rut	0.13	0.11	0.08	0.10
Average % Cracking	23	23	18	16

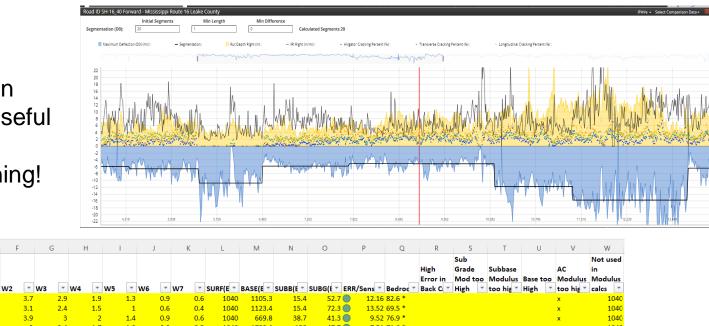


Pavement Condition Rating (PCR) Distribution



Distribution of Structural Measures

MS 16 Leake County (40) Do Distribution


MS 16 Leake County (40) SCI 12 Distribution

VIRGINIA TECH

Segmentation and Core Locations

Hawkeye Segmentation tool is very useful for corridor project planning!

	А	В	С	D	Е	F	G	н	1		J	К	L	М	N	0	Р	Q	R	S	т	U	V	W
																				Sub				Not use
																			High	Grade	Subbase		AC	in
		_			_				_										Error in	Mod too	Modulus	Base too	Modulus	Modulu
1	Statio 🗐	Lat 🛛 🕹	Long 🔄	(lbs) 🐣	W1 1	W2 1	W3 *	W4	⊻ W5		~ W	7 🔹	SURF(E 🐣	BASE(E 🐣	SUBB(E ≚	SUBG(E 🕆	ERR/Sen	🝸 Bedroc	Back C *	High 🛛	too hig 🏾	High 🝸	too hig 🍸	calcs
2	14.043	32.6236	-89.9542	9,140	4.	4 3.	7 2.	9 :	1.9	1.3	0.9	0.6	1040	1105.3	15.4	52.7	12	.16 82.6 *					х	104
3	14.053	32.6237	-89.9541	9,011	3.	8 3.	1 2.	4 :	1.5	1	0.6	0.4	1040	1123.4	15.4	72.3	13	.52 69.5 *					x	104
4	14.113	32.624	-89.9531	9,246	4.	73.	9	3	2	1.4	0.9	0.6	1040	669.8	38.7	41.3	0 9	.52 76.9 *					х	104
5	14.233	32.6246	-89.9512	9,283	3.	6	3 2.	4 :	1.7	1.2	0.8	0.5	1040	1780.4	150	47.7	0 7	.51 71.6 *			x	x	x	104
6	14.243	32.6247	-89.951	9,129	4.	1 3.	5 2.	В	2	1.5	1	0.7	1040	2000	15.4	51.1	13	.68 78.8 *				х	х	104
7	14.253	32.6247	-89.9509	9,130	4.	33.	6 2.	B :	1.9	1.4	1	0.7	1040	2000	10	50.7	0 9	.08 87.1 *				x		104
8	14.303	32.625	-89.9501	9,354	2.	62.	1 1.	5	1.1	0.8	0.6	0.4	1040	1987.5	23.7	117.8	25	.72 71.5 *	x			х		104
9	14.323	32.6251	-89.9497	9,251	2.	62.	31.	B :	1.2	0.9	0.6	0.4	1040	2000	150	66.9	0 9	.69 74.3 *		х	х	х		104
10	14.356	32.7708	-89.0837	9,152 1	4.	47.	5 2.	7 (0.9	0.4	0.3	0.2	340	100	10	65.3	43	.24 41.2 *	x					34
11	14.366	32.7707	-89.0835	9,458 1	5.	68.	6 3.	7 :	1.7	1	0.6	0.4	340	100	10	40.2	24	.79 52.0 *	х					34
12	14.466	32.7706	-89.0818	9,347 1	7.	8 12.	1 6.	B :	3.5	2	1.2	0.7	340	100	10	21.1	2	1.4 65.6 *	x					34
13	14.566	32.7706	-89.0801	9,588	7.	3 5.	6 4.	1	2.8	2	1.4	0.9	1040	393.1	24.4	30.9	0 4	.65 81.4 *						104
14	14.616	32.7705	-89.0792	9,553 1	9.	4 13.	6 8.	4 4	4.5	2.5	1.5	0.9	340	100	10	17.6	20	.26 72.2 *	x					34
15	14.706	32.7704	-89.0777	9,487 1	1.	5 8.	4 5.	1	2.5	1.3	0.7	0.4	517.4	100	10	34.7	20	.64 60.4 *	х					517

- Where to take cores?
- Converted iPAVE data to use Modulus 7
- Excluded A LOT of points

Beyond the Network: Leveraging iPAVE Data at the Network, Corridor and Project Level

> Jim Poorbaugh, PE MDOT Pavement Systems Engine

Mississippi Case Study Conclusions

Changed construction scope:

- Initially planned as "Major" (i.e., Full Depth Reclamation)
- ✓ Estimate \$61 mill from PMS
- Structural Numbers indicate that "Minor" is appropriate
- Estimate \$10-15 million for Construction.
- ✓ 75% reduction is cost.
- Grant received as part of the FHWA Climate Challenge
- Cold In Place Recycling.

Source: Jim Poorbaugh

CHALLENGE

Beyond the Network: ng iPAVE Data at the Network, Corrido and Project Level

Invitation: Third Symposium on Pavement Structural Evaluation with Traffic Speed Deflection Devices (TSDDs)

- → Spring/ Summer 2024
- → Location TBD (maybe Washington DC)

Conclusions

Conclusions

- The technology is mature for network-level pavement management
 - Accuracy and precision is adequate
 - Useful information to make better (more cost-effective) decisions
- It looks very promising for project/ corridor analysis
 - May need better calibration/ verification/ QA
 - Device specific analysis methods may produce even better results

 We can make a strong business case for collecting structural condition at the network, corridor, and project level showing very high returns on investment

Collecting network-level structural capacity and bluring the line between network and project level pavement asset management

TPF-5(385)

flintsch@vt.edu

Gerardo Flintsch, Dan Pletta Professor of Engineering Director, Center for Sustainable and Resilient Infrastructure

October 25, 2023

