

Administration

European Road Profile Users' Group 2023

Implementation of structural data in maintenance of national roads in Norway

Athens 25-27 October 2023, Per Otto Aursand, NPRA

Outline

- The strategy of NPRA (The Norwegian Public Roads Administration) on TSDD measurements
- A short presentation of the RAPTOR-project
- Our ideas on how to utilize the data
- Challenges and possibilities

The Norwegian Public Roads Administration

The strategy of NPRA on TSDD measurements - Goals

- Get knowledge on the structural condition.
- Basis for national priority-lists and systematic work on strenghtening measures.
- Data-driven pro-active maintenance.
- Overall asset management in a life cycle perspective.
- Improve pavement lifetime.
- Contribute to fulfil the goals in the national transport plan.

Vision Zero for road fatalities and serious injuries

Easier everyday mobility and increased competitiveness for business and industry

The strategy of NPRA on TSDD measurements – why do we do this?

 Reactive: measures are taken based mainly on the surface condition monitoring results (=symptoms)

2. Proactive: monitoring is made to detect root causes of the surface condition problems (diagnostics) and measures are taken before damages appear

Raptor Project

Three year project to measure the entire Norwegian state owned road network with a Rolling Weight Deflectometer (RWD). Georadar (GPR) as a complimentary service.

2021:

- Procurement for TSDD measurements
- Contract signed with Rambøll
- Option for GPR included (high frequency)
- Comparative measurements with FWD
- Measured 6000 km

2022:

- Comparative measurements with FWD and GPR
- Low-frequency GPR antenna added
- Measured 7500 km

2023:

- Finished measuring the whole road network
- Comparative measurements with FWD and GPR
- Tests with spring-thaw measurements
- Measured 6000 km

Comparison measurements with FWD

Statens vegvesen

Structural parameters

Bearing capacity in tonnes:*

$$B_{asfalt} = 11 \cdot \left(\frac{E_{dim}}{200}\right)^{0,6} \cdot \left(\frac{50}{\text{\AA}DT_T}\right)^{0,072}$$

$$E_{dim} = \frac{110 \cdot p}{\sqrt{d_0 \cdot (d_0 - d_{20})}}$$
 [MPa]

• Simple temperature correction formula for bearing capacity:

$$B_{Temp.korr.} = \frac{B}{1,3-0,015 \times T}$$

- SCI (D0-D200)
- BCI (D900-D1200)
- Other paramters

* The largest axel load a road can carry over a period of time witout the road condition falling under a defined axeptable limit (normal maintenace inclued).

Verifying the temperature correction formula formula

All our measurements are based on surface temperature

Current formula:

$$BC_{temp,corr.} = \frac{BC}{1.3 - 0.015 \times T}$$

RAPTOR - GPR

NB: No support from drill cores

Some results (2021-2022 data)

- ~15 % of the road network has bearing capacity less than fair.
- Improvement of bearing capacity is estimatet to cost 3,7 billion NOK.

Bearing capacity (tonnes)*	Classification
> 16	Good
14-16	Fair
12-14	Warning
10-12	Bad
< 10	Very bad

* Data fra ca. halv	parten av rvnettet,	hovedsakelig	i Sør og Nord
---------------------	---------------------	--------------	---------------

Combining bearing capacity and rutting-data

Bearing capacity	Rut developement		
	Good	Bad	
Good	No problems, follow ordinary	Problems in the asphalt or BC in sping	
	paving programme	thaw, investigate cause, improve	
		drainage	
Bad	Potential future problem,	Bigger problems, strengthening might	
	investigate cause and preform	be necessary, investigate cause and	
	pro-active maintenance to avoid	plan measures	
	consequential damage.		

Dashboard combining structural and functional data (1. screening)

Vegtilstand (vegvesen.no)

Kart Tabell

🔪 📔 Nivå 1 - Kart (Side 1 av 5) 🔻

2. stage: further investigation of problematic sections

- Deeper analysis of Raptor data
- Spring-thaw FWD measurements
- Drill cores/excevations
- Interpretation of GPR data
- Drainage inspection (laserdata can be useful)
- Integrated analysis to find reasons and select proper action

Proactive maintenance sections:

- Early resurfacing
- Drainage improvements
- Patching, crack sealing, surface treatments.

Strengthening need sections:

- Put section in long-term plan for strenghtening measures.
- Preform supplementary investigations and analysis.
- Allocate money for larger mainteance works.

Implementing 4-years paving plans:

Foreløpige asfaltplaner | Statens vegvesen

Challenges

- Established routines are hard to turn
- Need of new routines and requirements for pavement management
- Lack of expertice/pavement engineers
- Need of education within the road authorities about the use of TSDD data.

Opportunities

- Great interest in TSDD measurement and the data
- Several county's has also preformed TSDD measuremnts
- Educational establishment focus on structural data
- Master and PhD-students
- R&D opportunities
- More for less

Conclusions

Structural data is the missing, but very important part of a modern PMS system

Combining structural and functional data gives advantages.

Presentation of the data in understandable and practical format is important.

There are challenges implementing data, but also possibilities.

How to utilize data in the best way?

There is a need of education.

Thank you for your attention!

RAMBOLL RAPTOR